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Abstract

The effects of hydrodynamic and thermal heterogeneity, for the case of variation in both the horizontal and vertical directions, on the
onset of convection in a horizontal layer of a saturated porous medium uniformly heated from below, are studied analytically for the case
of weak heterogeneity. It is found that the effect of such heterogeneity on the critical value of the Rayleigh number Ra based on mean
properties is of second order if the properties vary in a piecewise constant or linear fashion. The effects of horizontal heterogeneity and
vertical heterogeneity are then comparable once the aspect ratio is taken into account, and to a first approximation are independent. For
the case of conducting impermeable top and bottom boundaries and a square box, the effects of permeability heterogeneity and conduc-
tivity heterogeneity each cause a reduction in the critical value of Ra, while for the case of a tall box there can be either a reduction or an
increase.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The classical Horton–Rogers–Lapwood problem, for
the onset of convection in a horizontal layer of a saturated
porous medium uniformly heated from below, has been
extensively studied. Studies of the effects of heterogeneity
in this situation are surveyed in Nield and Bejan [1], so a
comprehensive survey is not attempted here. However,
we record that the pioneering study was that of Ghe-
orghitza [2]. Particularly notable are the studies of vertical
heterogeneity (especially the case of horizontal layers) by
McKibbin and O’Sullivan [3,4], McKibbin and Tyvand
[5–7], Nield [8] and Leong and Lai [9,10], and the studies
of horizontal heterogeneity by McKibbin [11], Nield [12]
and Guonot and Caltagirone [13]. Some more general
aspects of conductivity heterogeneity have been discussed
by Vadasz [14], Braester and Vadasz [15] and Rees and
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Riley [16]. However, it appears that one set of questions
has been left unanswered: namely in what respects, if
any, does the effect of vertical heterogeneity differ from
the effect of horizontal heterogeneity for each of the perme-
ability (hydrodynamic) and conductivity (thermal) types,
and how do these two types interact with each other?

The topic of permeability heterogeneity [17] is currently
of interest for an additional reason. Simmons et al. [18] and
Prasad and Simmons [19] have pointed out that in many
heterogeneous geologic systems [20], hydraulic properties
such as the hydraulic conductivity of the system under con-
sideration can vary by many orders of magnitude and
sometimes rapidly over small spatial scales. They also
pointed out that the onset of instability in transient, sharp
interface problems is controlled by very local conditions in
the vicinity of the evolving boundary layer and not by the
global layer properties or indeed some average property of
that macroscopic layer. They also correctly pointed out
that any averaging process would remove the very
structural controls and physics that are expected to be
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Nomenclature

A aspect ratio (height to width)
c specific heat
k k*/k0

k* overall (effective) thermal conductivity
k0 mean value of k*(x*,y*)
K K*/K0

K* permeability
K0 mean value of K*(x*,y*)
L height (and width) of the enclosure
P dimensionless pressure,

ðqcÞf K0

lk0
P �

P* pressure
R Ra/4p2

Ra Rayleigh number, ðqcÞf q0gbK0LðT 1�T 0Þ
lk0

t* time
t dimensionless time, k0

ðqcÞmL2 t�

T* temperature
T0 temperature at the upper boundary
T1 temperature at the lower boundary
u dimensionless horizontal velocity, ðqcÞmL

k0
u�

u* vector of Darcy velocity, (u*,v*)
v dimensionless vertical velocity, ðqcÞmL

k0
v�

x dimensionless horizontal coordinate, x*/L
x* horizontal coordinate
y dimensionless upward vertical coordinate, y*/L
y* upward vertical coordinate

Greek symbols

b fluid volumetric expansion coefficient
h dimensionless temperature, T ��T 0

T 1�T 0

l fluid viscosity
q density
q fluid density at temperature T0

r heat capacity ratio, ðqcÞm
ðqcÞf

w streamfunction defined by Eq. (10a,b)

Subscripts

f fluid
m overall porous medium

Superscript
* dimensional variable
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important in controlling the onset, growth, and/or decay of
instabilities in a highly heterogeneous system. In particular,
in the case of dense plume migration in highly heteroge-
neous environments the application of an average global
Rayleigh number based upon average hydraulic conductiv-
ity of the medium is problematic. In these cases, an average
Rayleigh number is unable to predict the onset of instabil-
ity accurately because the system is characterized by
unsteady flows and large amplitude perturbations. For this
reason, it is desirable to look again at theoretical studies
that lead to a prediction of the criterion for instability.

Nield and Simmonds [21] have emphasized the need to
distinguish between weak heterogeneity and strong hetero-
geneity. For the case of weak heterogeneity (properties
varying by a factor not greater than 3 or so) the introduc-
tion of an equivalent Rayleigh number is useful. The extent
to which an equivalent Rayleigh number (based on aver-
aged permeability and averaged conductivity) might work
was investigated by Nield [8] for the case of vertical hetero-
geneity. He concluded that provided the variation of each of
the various parameters lies within one order of magnitude, a
rough and ready estimate of an effective Rayleigh number
can be made that is useful as a criterion for Rayleigh–
Bénard convection. This effective Rayleigh number is based
on the arithmetic mean quantities (such as the permeability)
that appear in the numerator, and the harmonic mean of
quantities (such as the viscosity) that appear in the denom-
inator of the defining expression. Similar conclusions were
drawn by Leong and Lai [9,10]. In the case of strong heter-
ogeneity the concept of an effective Rayleigh number loses
validity as a criterion for the onset of instability.
In this paper, we look again at the case of weak hetero-
geneity for the general case involving both vertical hetero-
geneity and horizontal heterogeneity. For this complicated
situation no exact analytical solution can be expected to
exist, but it is reasonable to seek an approximate analytical
solution. One would expect that for weak heterogeneity the
solution would not differ dramatically from the solution for
the homogeneous case. Following this approach, we utilize
an extension of the Galerkin approximate method that has
been widely employed (see, for example, Finlayson [22]). In
the context of the onset of convection, the Galerkin
method commonly used involves trial functions of the ver-
tical coordinate only. In the analysis that follows trial func-
tions of both the vertical and horizontal coordinates are
introduced, and these trial functions are chosen to be the
known exact solutions for the homogeneous case.

The problem studied here is the heterogeneous extension
of the analysis for the classical Horton–Roger–Lapwood
(HRL) problem for the case of impervious thermally
conducting bottom and top boundaries. Two-dimensional
convection in a square box with impervious thermally insu-
lated side walls is examined. This geometry is chosen
because it is well known that the favored form of convec-
tion in the homogeneous HRL problem for a horizontal
layer is a pattern of cells with square cross-section and by
symmetry there is no heat flux normal to the cell side walls.
This means that we have in mind a horizontal layer of infi-
nite extent, but we have effectively pre-selected the horizon-
tal wavenumber of the disturbances in the resulting
instability problem, taking it as the critical value for the
homogeneous case. Thus there is little loss of generality
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in the choice of aspect ratio of the box as far as the hori-
zontal layer situation is concerned. However, later in the
paper the effect of a change in aspect ratio is investigated.
2. Analysis

Single-phase flow in a saturated porous medium is con-
sidered. Asterisks are used to denote dimensional variables.
We consider a square box, 0 6 x* 6 L, 0 6 y* 6 L, where
the y* axis is in the upward vertical direction. The side walls
are taken as insulated, and uniform temperatures T0 and T1

are imposed at the upper and lower boundaries,
respectively.

Within this box the permeability is K*(x*,y*) and the
overall (effective) thermal conductivity is k*(x*,y*). The
Darcy velocity is denoted by u* = (u*,v*). The Oberbeck–
Boussinesq approximation is invoked. The equations repre-
senting the conservation of mass, thermal energy, and
Darcy’s law take the form

ou�

ox�
þ ov�

oy�
¼ 0; ð1Þ

ðqcÞm
oT �

ot�
þ ðqcÞf u�

oT �

ox�
þ v�

oT �

oy�

� �
¼ k�ðx�;y�Þ o2T �

ox�2
þo2T �

oy�2

� �
;

ð2Þ

u� ¼ �K�ðx�; y�Þ
l

oP �

ox�
;

v� ¼ K�ðx�; y�Þ
l

� oP �

oy�
� q0bgðT � � T 0Þ

� �
: ð3a; bÞ

Here (qc)m and (qc)f are the heat capacities of the overall
porous medium and the fluid, respectively, l is the fluid vis-
cosity, q is the fluid density at temperature T0, and b is the
volumetric expansion coefficient.

We introduce dimensionless variables by defining

ðx; yÞ ¼ 1

L
ðx�; y�Þ; ðu; vÞ ¼ ðqcÞmL

k0

ðu�; v�Þ; t ¼ k0

ðqcÞmL2
t�;

h ¼ T � � T 0

T 1 � T 0

; P ¼ ðqcÞfK0

lk0

P �;

ð4a;b; c;d; eÞ

where k0 is the mean value of k*(x*,y*) and K0 is the mean
value of K*(x*,y*).

We also define a Rayleigh number Ra by

Ra ¼ ðqcÞfq0gbK0LðT 1 � T 0Þ
lk0

ð5Þ

and the heat capacity ratio

r ¼ ðqcÞm
ðqcÞf

: ð6Þ
The governing equations then take the form

ou
ox
þ ov

oy
¼ 0; ð7Þ

oh
os
þ 1

r
u
oh
ox
þ v

oh
oy

� �
¼ kðx; yÞ o

2h
ox2
þ o

2h
oy2

� �
; ð8Þ

u ¼ �Kðx; yÞ oP
ox
; v ¼ Kðx; yÞ � oP

oy
þ rRah

� �
; ð9Þ

where k(x,y) = k*(x*,y*)/k0 and K(x,y) = K*(x*,y*)/K0.
We introduce a streamfunction w so that

u ¼ rRa
ow
oy
; v ¼ �rRa

ow
ox
: ð10a; bÞ

We also eliminate P. In doing this we assume that, in accor-
dance with the assumption of weak heterogeneity, that the
maximum variation of K over the domain is small com-
pared with the mean value of K, so we can approximate
oðu=K̂Þ=ox̂ by ð1=K̂Þou=ox̂, etc. The result is

o2w
ox2
þ o2w

oy2
¼ �Kðx; yÞ oh

ox
; ð11Þ

oh
os
þ Ra

ow
oy

oh
ox
� ow

ox
oh
oy

� �
¼ kðx; yÞ o2h

ox2
þ o2h

oy2

� �
: ð12Þ

The conduction solution is given by

w ¼ 0; h ¼ 1� y: ð13a; bÞ
The perturbed solution is given by

w ¼ ew0; h ¼ 1� y þ eh0: ð14a; bÞ
To first order in the small constant e, we get

o2w0

ox2
þ o2w0

oy2
þ Kðx; yÞ oh0

ox
¼ 0; ð15Þ

oh0

os
þ Ra

ow0

ox
� kðx; yÞ o2h0

ox2
þ o2h0

oy2

� �
¼ 0: ð16Þ

For the onset of convection we can invoke the ‘‘principal of
exchange of stabilities” and hence take the time derivative
in Eq. (16) to be zero.

The boundary conditions are

w0 ¼ 0 and h0 ¼ 0 on y ¼ 0; ð17a; bÞ
w0 ¼ 0 and h0 ¼ 0 on y ¼ 1; ð18a; bÞ
w0 ¼ 0 and oh0=ox ¼ 0 on x ¼ 0; ð19a; bÞ
w0 ¼ 0 and oh0=ox ¼ 0 on x ¼ 1: ð20a; bÞ

This set of boundary conditions is satisfied by

w0mn ¼ sin mpx sin npy; m; n ¼ 1; 2; 3; . . . ð21Þ
h0pq ¼ cos ppx sin qpy; p; q ¼ 1; 2; 3; . . . ð22Þ

We can take this set of functions (that are exact eigenfunc-
tions for the homogeneous case) as trial functions for an
approximate solution of the heterogeneous case. For exam-
ple, working at second order, we can try

w0 ¼ A11w
0
11 þ A12w

0
12 þ A21w

0
21 þ A22w

0
22; ð23Þ

h0 ¼ B11h
0
11 þ B12h

0
12 þ B21h

0
21 þ B22h

0
22: ð24Þ
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In the Galerkin method, the expression (23) is substi-
tuted into the left-hand side of Eq. (15) and the resulting
residual is made orthogonal to the separate trial functions
w011; w012; w021; w022 in turn. Likewise the residual on the
substitution of the expression (24) into Eq. (16) is made
orthogonal to h011; h012; h021; h022 in turn. We use the
notation

hf ðx; yÞi ¼
Z 1

0

Z 1

0

f ðx; yÞdxdy; ð25Þ

and define

Imnpq ¼ 4hKðx; yÞ sin mpx sin npy sin ppx sin qpyi; ð26Þ
J mnpq ¼ 4hkðx; yÞ cos mpx sin npy cos ppx sin qpyi: ð27Þ

We note that hk(x,y)i = 1 and hK(x,y)i = 1. Also,

4hsinmpx sinnpy sinppx sinqpyi ¼
1 if m¼ p and n¼ q

0 otherwise

�
;

ð28Þ

4hcosmpx sinnpy cosppx sinqpyi ¼
1 if m¼ p and n¼ q

0 otherwise

�
:

ð29Þ

The output of the Galerkin procedure is a set of 8 homoge-
neous linear equations in the 8 unknown constants A11,
A12, A21, A22, B11, B12, B21, B22. Eliminating these con-
stants we get

det M ¼ 0; ð30Þ
where the matrix M takes the form

M¼

2p2 0 0 0 pI1111 pI1211 2pI2111 2pI2211

0 5p2 0 0 pI1112 pI1212 2pI2112 2pI2212

0 0 5p2 0 pI1121 pI1221 2pI2121 2pI2221

0 0 0 8p2 pI1122 pI1222 2pI2122 2pI2222

pRa 0 0 0 2p2J 1111 5p2J 1211 5p2J 2111 8p2J 2211

0 pRa 0 0 2p2J 1112 5p2J 1212 5p2J 2112 8p2J 2212

0 0 2pRa 0 2p2J 1121 5p2J 1221 5p2J 2121 8p2J 2221

0 0 0 2pRa 2p2J 1122 5p2J 1222 5p2J 2122 8p2J 2222

2
66666666666666664

3
77777777777777775

ð31Þ
In the general case, the integrals in Eqs. (26) and (27) can
be obtained by quadrature. The eigenvalue equation, Eq.
(30) can then be solved to give the critical Rayleigh
number.

3. Results and discussion

3.1. First order results

For example, the order-one Galerkin method (using a
single trial function for each of w and h) yields the eigen-
value equation

det
2p2 pI1111

pRa 2p2J 1111

� �
¼ 0; ð32Þ
which gives

Ra ¼ 4p2J 1111=I1111: ð33Þ

For the homogeneous case, I1111 = 1 and J1111 = 1, and so
Ra = 4p2, the well known value for the Horton–Rogers–
Lapwood problem. We also observe that the same value
is obtained if K(x,y) = k(x,y) for all (x,y), that is if the per-
meability heterogeneity and the conductivity heterogeneity
follow the same pattern of variation.

As a further example, consider the case of permeability
heterogeneity with conductivity homogeneity. Then J1111 =
1 but

I1111 ¼ 4hKðx; yÞ sin2 px sin2 pyi; ð34Þ

something that is in general different from unity.
In particular, consider a quartered square, namely the

present square divided by the lines x = 1/2, y = 1/2. If K

takes the values c1, c2, c3, c4 in the respective quarters, then,
since

R 1=2

0
sin2 pxdx ¼ 1

2
and

R 1

1=2
sin2 pxdx ¼ 1

2
we find that

I1111 ¼ ðc1 þ c2 þ c3 þ c4Þ=4 ¼ 1; ð35Þ

because the mean value of K is 1. Thus in this case the het-
erogeneity does not alter the critical value of the Rayleigh
number based on the mean permeability at first order.

Further, it appears that a linear variation of permeabil-
ity does not affect the critical value of Ra at first order. The
cases K(x,y) = 1 + c(x � 1/2)(y � 1/2) and K(x,y) = 1 +
c1(x � 1/2) + c2(y � 1/2) each lead to

I1111 ¼ 1: ð36Þ
3.2. Second order results

In order to examine the interaction of permeability het-
erogeneity and conductivity heterogeneity we return to
Eqs. (30) and (31) and apply these to the quartered square
with piecewise-constant properties. We consider the case

Kðx; yÞ ¼ 1� dH � dV;

kðx; yÞ ¼ 1� eH � eV; for 0 < x < 1=2; 0 < y < 1=2;

Kðx; yÞ ¼ 1þ dH � dV;

kðx; yÞ ¼ 1þ eH � eV; for 1=2 < x < 1; 0 < y < 1=2;

Kðx; yÞ ¼ 1� dH þ dV;

kðx; yÞ ¼ 1� eH þ eV; for 0 < x < 1=2; 1=2 < y < 1;

Kðx; yÞ ¼ 1þ dH þ dV;

kðx; yÞ ¼ 1þ eH þ eV; for 1=2 < x < 1; 1=2 < y < 1:

ð37Þ

This case approximates a general case in which each slowly
varying quantity is approximated by a piecewise-constant
distribution. The mean value of the quantity is approxi-
mated by its value at centre of the main square:

�f ¼ f ð0:5; 0:5Þ:

In each quarter, the function is approximated by its
value at the centre of that quarter, and a truncated Taylor
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series expansion is used to approximate this factor. For
example, in the region 1/2 < x < 1, 1/2 < y < 1, f(x,y) is
approximated by f(0.75,0.75) and then by f(0.5,0.5) +
0.25fx(0.5,0.5) + 0.25fy(0.5,0.5).

Thus

dH ¼
1

4

1

K
oK
ox

� �
ð1=2;1=2Þ

; dV ¼
1

4

1

K
oK
oy

� �
ð1=2;1=2Þ

;

eH ¼
1

4

1

k
ok
ox

� �
ð1=2;1=2Þ

; eV ¼
1

4

1

k
ok
oy

� �
ð1=2;1=2Þ

:

ð38Þ

In terms of the shorthand notation

DH ¼ ð8=3pÞdH; DV ¼ ð8=3pÞdV;

EH ¼ ð8=3pÞeH; EV ¼ ð8=3pÞeV; ð39Þ

one has

I1111 ¼ I1212 ¼ I2121 ¼ I2222 ¼ 1

I1211 ¼ I1112 ¼ I2221 ¼ I2122 ¼ �DH

I2111 ¼ I2212 ¼ I1121 ¼ I1222 ¼ �DV

I2211 ¼ I2112 ¼ I1221 ¼ I1122 ¼ 0;

ð40Þ

and

J 1111 ¼ J 1212 ¼ J 2121 ¼ J 2222 ¼ 1

J 1211 ¼ J 1112 ¼ J 2221 ¼ J 2122 ¼ �EH

J 2111 ¼ J 2212 ¼ J 1121 ¼ J 1222 ¼ �EV

J 2211 ¼ J 2112 ¼ J 1221 ¼ J 1122 ¼ 0:

ð41Þ

Writing R = Ra/4p2,

a ¼ 1; b ¼ 4=25; c ¼ 16=25; d ¼ 1=4;

k ¼ 5=2; l ¼ 5=4; r ¼ 4=5; s ¼ 8=5;
ð42Þ

and manipulating the rows and columns of the determi-
nant, one obtains the form

det

1 0 0 0 1 �DH �DV 0

0 1 0 0 �DH 1 0 �DV

0 0 1 0 �DV 0 1 �DH

0 0 0 1 0 �DV �DH 1

aR 0 0 0 1 �kEH �lEV 0

0 bR 0 0 �k�1EH 1 0 �rEV

0 0 cR 0 �l�1EV 0 1 �sEH

0 0 0 dR 0 �r�1EV �s�1EH 1

2
66666666666664

3
77777777777775

¼ 0

ð43Þ

This expands to give a quartic equation in R, and the small-
est root is sought. For the homogeneous case this is R = 1.

Consider the case where DH, DV, EH, and EV are all
small compared with unity.

One can now set R = 1 + S where S is small compared
with unity. Substituting, linearizing, and solving for S

one obtains

S ¼ � 1

63
½3ð2DH � 5EHÞ2 þ 7ð4DV � 5EVÞ2�: ð44Þ
This leads to the critical value

Ra ¼ 4p2 1� 64

567p2
½3ð2dH � 5eHÞ2 þ 7ð4dV � 5eVÞ2�

� �

� 40f1� 0:137ðdH � 2:5eHÞ2 � 1:281ðdV � 1:25eVÞ2g:
ð45Þ

A number of conclusions can be drawn. The effects of weak
horizontal heterogeneity and vertical heterogeneity are
each of second order in the property deviations. Their com-
bined contribution is of the order of the variances of the
distributions for permeability and conductivity (which are
here equal to d2

H þ d2
V and e2

H þ e2
V, respectively.) The effect

of vertical heterogeneity is somewhat greater than that of
horizontal heterogeneity. Further, they act independently
at this order of approximation. (Product terms like dHdV

are absent in the last expression.) Since the expression in
square brackets in Eq. (44) is positive definite, the hetero-
geneities lead to a reduction in the critical value of Ra

for all combinations of horizontal and vertical heterogene-
ities and all combinations of permeability and conductivity
heterogeneities. (The reduction is zero for the very special
case where dH = 2.5eH and dV = 1.25eV.) The effects of
the horizontal permeability heterogeneity and the horizon-
tal conductivity heterogeneity are at the first combination
step subtractive (and similarly with horizontal replaced
by vertical), as one might expect since the permeability ap-
pears in the numerator in the definition of Ra whereas the
conductivity appears in the denominator.

At first sight it appears from Eq. (45) that the effect of
conductivity heterogeneity is substantially greater than
the effect of permeability heterogeneity. However, the
expression in that equation is somewhat misleading. In this
expression Ra is based on the arithmetic mean conductiv-
ity, whereas a better comparison is when the effective Ray-
leigh number is based on the harmonic mean conductivity,
as noted by Nield [8]. The harmonic mean of 1 � e and
1 + e is 1 � e2. When allowance is made for this, the effects
of permeability heterogeneity and conductivity heterogene-
ity are found to be approximately equal.

4. Extensions to the analysis

4.1. Three-dimensional heterogeneity

The methodology used in this paper allows an extension
to the case of three-dimensional heterogeneity in a cubical
box. We have not made the effort to carry out this analysis,
because we expect the result to be just the addition to Eq.
(45) of additional terms involving horizontal heterogeneity,
symmetrical to the existing terms involving horizontal
heterogeneity.

4.2. Tall box

For a box with height-to-width aspect ratio A, where A

is an integer, one can scale the x-coordinate by the factor
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A. One then recovers the same equations as before but now
Eqs. (15) and (16) are replaced by

A2 o2w0

ox2
þ o2w0

oy2
þ Kðx; yÞA oh0

ox
¼ 0; ð46Þ

oh0

os
þ RaA

ow0

ox
� kðx; yÞ A2 o2h0

ox2
þ o2h0

oy2

� �
¼ 0: ð47Þ

That eigenvalue equation becomes

det

1 0 0 0 I1111 I1211 I2111 I2211

0 1 0 0 I1112 I1212 I2112 I2212

0 0 1 0 I1121 I1221 I2121 I2221

0 0 0 1 I1122 I1222 I2122 I2222

aR 0 0 0 J 1111 kJ 1211 lJ 2111 mJ 2211

0 bR 0 0 k�1J 1112 J 1212 qJ 2112 rJ 2212

0 0 cR 0 l�1J 1121 q�1J 1221 J 2121 sJ 2221

0 0 0 dR m�1J 1122 r�1J 1222 s�1J 2122 J 2222

2
66666666666666664

3
77777777777777775

¼ 0;

ð48Þ

where

a¼ 4A2

ðA2þ1Þ2
; b¼ 4A2

ðA2þ4Þ2
; c¼ 16A2

ð4A2þ1Þ2
; d¼ 16A2

ðA2þ1Þ2
;

k¼A2þ4

A2þ1
; l¼ 4A2þ1

2A2þ2
; m¼ 2A2þ2

A2þ1
; q¼ 4A2þ1

2A2þ8
;

r¼ 4A2þ4

2A2þ8
; s¼ 4A2þ4

4A2þ1
:

ð49Þ
For a quartered box with piecewise-constant distributions
of K and k, Eqs. (40) and (41) still hold.

In the limit as A ?1, one gets the limiting values

A2a ¼ 4; A2b ¼ 4; A2c ¼ 1; A2d ¼ 16;

k ¼ 1; l ¼ 2; m ¼ 2; q ¼ 2; r ¼ 2; s ¼ 1:
ð50Þ

One finds that

R=A2 ¼ 1þ S ð51Þ
where

S ¼ 1

15
ð16DH � EHÞðDH � EHÞ þ 5ð2DV � EVÞ2
h i

: ð52Þ

This leads to

Ra¼ 4p2A2 1þ 64

135p2
½ð16dH� eHÞðdH� eHÞþ5ð2dV� eVÞ2�

� �

� 40 A2f1þ0:048ð16dH� eHÞðdH� eHÞþ0:240ð2dV� eVÞ2g:
ð53Þ

Comparison with Eq. (45) shows that the homogeneous
case value of Ra is increased by the factor A2, while the ef-
fect of heterogeneity is no longer monotonic. The vertical
heterogeneity leads to an increase in Ra and the horizontal
heterogeneity produces either an increase or decrease
depending on the value of dH/eH.
One should note that the effects of the horizontal and
vertical contributions are immediately comparable only if
one uses the total amount of variation across the box as
a the measure of heterogeneity. If one uses the rate of var-
iation with distance as the criterion, one has to take
account of the fact that the x- and y- coordinates have been
differently scaled, by a factor A. For example, in terms of
quantities evaluated at the centre of the box,

dV

dH

¼ oK=oy
oK=ox

¼ H
L

oK�=oy�

oK�=ox�
¼ A

oK�=oy�

oK�=ox�
: ð54Þ

Thus if A is large then the vertical heterogeneity has a
greater impact than the horizontal heterogeneity, other
things being equal.

5. Conclusions

We have initiated a study of the relationships between
the effects of horizontal and vertical heterogeneities on
the onset of convection in a porous medium. For the case
of weak heterogeneity we have employed an approximate
analysis to reach some general conclusions. We have shown
that a Rayleigh number based on mean properties is a good
basis for the prediction of the onset of instability. Expres-
sions for the critical value of this parameter in terms of
measures of the heterogeneity have been obtained. It has
been found that piecewise-constant or linear property var-
iation leads to effects that enter at second order in small
variations, while the effect of nonlinear property variation
enters at first order. The piecewise-constant case has been
investigated in detail. For this case it has been shown that
the effects of horizontal heterogeneity and vertical hetero-
geneity are comparable and to a first approximation are
independent. For the case of a square box with conducting
impermeable top and bottom, the effects of permeability
heterogeneity and conductivity permeability in any combi-
nation cause a reduction in the critical value of Ra. For a
tall box there can be either a reduction or an increase.

The cases of moderate or strong heterogeneity remain as
challenges for future work. We believe that it is likely that
moderate heterogeneity can be treated by numerical meth-
ods along roughly the same lines as the present work.
Strong heterogeneity may require a more radical treatment.

6. Note added in proof

This paper is concerned with weak heterogeneity, and
the basic assumption is that for each property (permeabil-
ity, conductivity) the maximum variation of the property
over the domain is small compared with the mean value
of that property. Consequently no term in ok*/ox* or
ok*/oy* appears on the right-hand side of Eq. (2). It can
be shown that this approximation has no effect on the
results presented in this paper provided that k* is a linear
function of the spatial variables considered separately. A
similar assumption about the variation of the permeability
is made in writing Eq. (11).
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